POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name		
Engineering of chemical reactors		
Course		
Field of study		Year/Semester
Chemical and process engineering		3/6
Area of study (specialization)		Profile of study
		general academic
Level of study		Course offered in
First-cycle studies		Polish
Form of study		Requirements
full-time		compulsory
Number of hours		
Lecture	Laboratory classes	Other (e.g. online)
30	45	
Tutorials	Projects/seminars	
	15	
Number of credit points		
5		
Lecturers		
Responsible for the course/lecture	r: Res	oonsible for the course/lecturer:
dr hab. inż. Krzysztof Alejski, prof.	р	

Prerequisites

Student should have fundamental knowledge in the range of thermodynamics and chemical kinetics and also should have the ability to use differential calculus. The student has the ability to use a differential calculus. Student has the ability to acquire information from specified sources.

Course objective

Obtaining knowledge and skills in material and energy balancing of reactor processes, as well as kinetic calculation and selection of chemical reactors for various reaction systems.

Course-related learning outcomes

Knowledge

1. Has structured and theoretically founded knowledge about the classification of reactors and their use to conduct reaction processes for various purposes. (K_W12, K_W13)

2. Has knowledge of theoretical models used in reactor calculations. (K_W10, K_W12)

3. Has knowledge about the conditions for choosing the type of reactor depending on the type of process. (K_W15, K_W18)

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Skills

- 1. Has the ability to conduct balance calculations of reaction systems. (K_U16)
- 2. He can choose the type and design reactor for chemical production. (K_U16, K_U17)

Social competences

- 1. Understands the need to constantly update knowledge. (K_K1, K_K2)
- 2. Has the ability to work in a team. (K_K4)

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Knowledge acquired during the lecture and skills are verified during the written exam. Passing threshold: 50% of points. Knowledge, skills and competences within project classes are verified on the basis of projects made in two-man teams.

Programme content

- 1. Classification of reactors.
- 2. Special reactors.
- 3. Material and energy balance of flow reactor.
- 4. Theoretical models of reactors.
- 5. Design of reactors.
- 6. Criteria for choosing the reactor type.

Teaching methods

Lecture: presentation with discussion on the board.

Project: implementation of the reactor design in two-man teams.

Laboratory classes: laboratory tests

Bibliography

Basic

- 1. J. Szarawara, J. Piotrowski, Podstawy teoretyczne technologii chemicznej, Warszawa, PWN 2010.
- 2. Podstawy technologii chemicznej i inżynierii reaktorów, pod red. M. Wiśniewskiego
- i K. Alejskiego, skrypt, Wydawnictwo Politechniki Poznańskiej, Poznań 20017.
- 3. A. Burghardt, G. Bartelmus, Inżynieria reaktorów chemicznych, PWN Warszawa 2001.
- 4. Fogler H. Scott, Elements of Chemical Reaction Engineering, Prentice Hall 2016.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Additional

- 1. P.W. Atkins, Chemia fizyczna, Wyd. Nauk. PWN, Warszawa 2003.
- 2. J. Szarawara, Termodynamika chemiczna stosowana, WNT 2007.

Breakdown of average student's workload

	Hours	ECTS
Total workload	150	5,0
Classes requiring direct contact with the teacher	90	3,0
Student's own work (literature studies, preparation for laboratory	60	2,0
classes, preparation for tests/exam, project preparation) ¹		

¹ delete or add other activities as appropriate